`r lifecycle::badge('deprecated')`
waves 0.2.0 renamed a number of functions to ensure that every function name adheres to the tidyverse style guide.
* `AggregateSpectra()` -> `aggregate_spectra()` * `DoPreprocessing()` -> `pretreat_spectra()` * `FilterSpectra()` -> `filter_spectra()` * `FormatCV()` -> `format_cv()` * `PlotSpectra()` -> `plot_spectra()` * `PredictFromSavedModel()` -> `predict_spectra()` * `SaveModel()` -> `save_model()` * `TestModelPerformance()` -> `test_spectra()` * `TrainSpectralModel()` -> `train_spectra()`
AggregateSpectra(
df,
grouping.colnames = c("unique.id"),
reference.value.colname = "reference",
agg.function = "mean"
)
DoPreprocessing(df, test.data = NULL, pretreatment = 1)
FilterSpectra(
df,
filter = TRUE,
return.distances = FALSE,
num.col.before.spectra = 4,
window.size = 10,
verbose = TRUE
)
FormatCV(
trial1,
trial2,
trial3 = NULL,
cv.scheme,
stratified.sampling = TRUE,
proportion.train = 0.7,
seed = NULL,
remove.genotype = FALSE
)
PlotSpectra(
df,
num.col.before.spectra = 1,
window.size = 10,
detect.outliers = TRUE,
color = NULL,
alternate.title = NULL,
verbose = TRUE
)
PredictFromSavedModel(
input.data,
model.stats.location,
model.location,
model.method = "pls"
)
SaveModel(
df,
save.model = TRUE,
pretreatment = 1,
model.save.folder = NULL,
model.name = "PredictionModel",
best.model.metric = "RMSE",
k.folds = 5,
proportion.train = 0.7,
tune.length = 50,
model.method = "pls",
num.iterations = 10,
stratified.sampling = TRUE,
cv.scheme = NULL,
trial1 = NULL,
trial2 = NULL,
trial3 = NULL,
verbose = TRUE
)
TestModelPerformance(
train.data,
num.iterations,
test.data = NULL,
pretreatment = 1,
k.folds = 5,
proportion.train = 0.7,
tune.length = 50,
model.method = "pls",
best.model.metric = "RMSE",
stratified.sampling = TRUE,
cv.scheme = NULL,
trial1 = NULL,
trial2 = NULL,
trial3 = NULL,
split.test = FALSE,
verbose = TRUE
)
TrainSpectralModel(
df,
num.iterations,
test.data = NULL,
k.folds = 5,
proportion.train = 0.7,
tune.length = 50,
model.method = "pls",
best.model.metric = "RMSE",
stratified.sampling = TRUE,
cv.scheme = NULL,
trial1 = NULL,
trial2 = NULL,
trial3 = NULL,
split.test = FALSE,
verbose = TRUE
)